Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(1): 329-338, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33346764

RESUMO

Understanding the catalytic decomposition of nitrous oxide on finely divided transition metals is an important environmental issue. In this study, we present the results of a combined infrared action spectroscopy and quantum chemical investigation of molecular N2O binding to isolated Aun+ (n ≤ 7) and Con+ (n ≤ 5) clusters. Infrared multiple-photon dissociation spectra have been recorded in the regions of both the N[double bond, length as m-dash]O (1000-1400 cm-1) and N[double bond, length as m-dash]N (2100-2450 cm-1) stretching modes of nitrous oxide. In the case of Aun+ clusters only the ground electronic state plays a role, while the involvement of energetically low-lying excited states in binding to the Con+ clusters cannot be ruled out. There is a clear preference for N-binding to clusters of both metals but some O-bound isomers are observed in the case of smaller Con(N2O)+ clusters.

2.
Phys Chem Chem Phys ; 22(33): 18606-18613, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32785404

RESUMO

Infrared multiple-photon dissociation spectroscopy has been applied to study Ptn(N2O)+ (n = 1-8) clusters which represent entrance-channel complexes on the reactive potential energy surface for nitrous oxide decomposition on platinum. Comparison of spectra recorded in the spectral region 950 cm-1 to 2400 cm-1 with those simulated for energetically low-lying structures from density functional theory shows a clear preference for molecular binding via the terminal N atom, though evidence of O-binding is observed for some cluster sizes. Enhanced reactivity of Ptn+n≥ 6 clusters towards N2O is reflected in the calculated reactive potential energy surfaces and, uniquely in the size range studied, Pt6(N2O)+ proved impossible to form in significant number density even with cryogenic cooling of the cluster source. Infrared-driven N2O decomposition, resulting in the formation of cluster oxides, PtnO+, is observed following vibrational excitation of several Ptn(N2O)+ complexes.

3.
J Phys Chem A ; 124(26): 5389-5401, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32491870

RESUMO

OCS binding to and reactivity with isolated gold cluster cations, Aun+ (n = 1-10), has been studied by infrared multiple photon dissociation (IR-MPD) spectroscopy in conjunction with quantum chemical calculations. The distribution of complexes AunSx(OCS)m+ formed reflects the relative reactivity of different cluster sizes with OCS, under the multiple collision conditions of our ablation source. The IR-MPD spectra of Aun(OCS)+ (n = 3-10) clusters are interpreted in terms of either µ1 or µ2 S binding motifs. Analysis of the fragmentation products following infrared excitation of parent Aun(OCS)+ clusters reveals strongly size-selective (odd-even) branching ratios for OCS and CO loss, respectively. CO loss signifies infrared-driven OCS decomposition on the cluster surface and is observed to occur predominantly on even n clusters (i.e., those with odd electron counts). The experimental data, including fragmentation branching ratios, are consistent with calculated potential energy landscapes, in which the initial species trapped are molecularly bound entrance channel complexes, rather than global minimum inserted structures. Attempts to generate Rhn(OCS)+ and Ptn(OCS)+ equivalents failed; only sulfide reaction products were observed in the mass spectrum, even after cooling the cluster source to -100 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...